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Preface to Seventh Edition

Building on the core content and style of its predecessor, this
seventh edition (7/e) of Applied Electromagnetics introduces
new features designed to help students develop a deeper
understanding of electromagnetic concepts and applications.
Prominent among them is a set of 52 web-based simulation
modules that allow the user to interactively analyze and design
transmission line circuits; generate spatial patterns of the
electric and magnetic fields induced by charges and currents;
visualize in 2-D and 3-D space how the gradient, divergence,
and curl operate on spatial functions; observe the temporal and
spatial waveforms of plane waves propagating in lossless and
lossy media; calculate and display field distributions inside
a rectangular waveguide; and generate radiation patterns for
linear antennas and parabolic dishes. These are valuable
learning tools; we encourage students to use them and urge
instructors to incorporate them into their lecture materials and
homework assignments.

Additionally, by enhancing the book’s graphs and il-
lustrations, and by expanding the scope of topics of the
Technology Briefs, additional bridges between electromagnetic
fundamentals and their countless engineering and scientific
applications are established. In summary:

NEW TO THIS EDITION

• A set of 10 additional interactive simulation modules,
bringing the total to 52

• Updated Technology Briefs

• Enhanced figures and images

• New/updated end-of-chapter problems

• The interactive modules and Technology Briefs
can be found at the Student Website on
http://www.pearsonhighered.com/ulaby.

ACKNOWLEDGMENTS

As authors, we were blessed to have worked on this book
with the best team of professionals: Richard Carnes, Leland
Pierce, Janice Richards, Rose Kernan, and Paul Mailhot. We are
exceedingly grateful for their superb support and unwavering
dedication to the project.

We enjoyed working on this book. We hope you enjoy
learning from it.

Fawwaz T. Ulaby
Umberto Ravaioli
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CONTENT

The book begins by building a bridge between what should be
familiar to a third-year electrical engineering student and the
electromagnetics (EM) material covered in the book. Prior to
enrolling in an EM course, a typical student will have taken one
or more courses in circuits. He or she should be familiar with
circuit analysis, Ohm’s law, Kirchhoff’s current and voltage
laws, and related topics. Transmission lines constitute a natural
bridge between electric circuits and electromagnetics. Without
having to deal with vectors or fields, the student uses already
familiar concepts to learn about wave motion, the reflection and
transmission of power, phasors, impedance matching, and many
of the properties of wave propagation in a guided structure. All
of these newly learned concepts will prove invaluable later (in
Chapters 7 through 9) and will facilitate the learning of how
plane waves propagate in free space and in material media.
Transmission lines are covered in Chapter 2, which is preceded

in Chapter 1 with reviews of complex numbers and phasor
analysis.

The next part of the book, contained in Chapters 3 through 5,
covers vector analysis, electrostatics, and magnetostatics. The
electrostatics chapter begins with Maxwell’s equations for the
time-varying case, which are then specialized to electrostatics
and magnetostatics, thereby providing the student with an
overall framework for what is to come and showing him or
her why electrostatics and magnetostatics are special cases of
the more general time-varying case.

Chapter 6 deals with time-varying fields and sets the
stage for the material in Chapters 7 through 9. Chapter 7
covers plane-wave propagation in dielectric and conducting
media, and Chapter 8 covers reflection and transmission at
discontinuous boundaries and introduces the student to fiber
optics, waveguides and resonators.

In Chapter 9, the student is introduced to the principles of
radiation by currents flowing in wires, such as dipoles, as well as

Suggested Syllabi

Two-semester Syllabus One-semester Syllabus
6 credits (42 contact hours per semester) 4 credits (56 contact hours)

Chapter Sections Hours Sections Hours
1 Introduction: All 4 All 4

Waves and Phasors
2 Transmission Lines All 12 2-1 to 2-8 and 2-11 8
3 Vector Analysis All 8 All 8
4 Electrostatics All 8 4-1 to 4-10 6
5 Magnetostatics All 7 5-1 to 5-5 and 5-7 to 5-8 5

Exams 3 2
Total for first semester 42

6 Maxwell’s Equations All 6 6-1 to 6-3, and 6-6 3
for Time-Varying Fields

7 Plane-wave Propagation All 7 7-1 to 7-4, and 7-6 6
8 Wave Reflection All 9 8-1 to 8-3, and 8-6 7

and Transmission
9 Radiation and Antennas All 10 9-1 to 9-6 6

10 Satellite Communication All 5 None —
Systems and Radar Sensors
Exams 3 1

Total for second semester 40 Total 56
Extra Hours 2 0



PREFACE vii

to radiation by apertures, such as a horn antenna or an opening
in an opaque screen illuminated by a light source.

To give the student a taste of the wide-ranging applications of
electromagnetics in today’s technological society, Chapter 10
concludes the book with overview presentations of two system
examples: satellite communication systems and radar sensors.

The material in this book was written for a two-semester
sequence of six credits, but it is possible to trim it down to
generate a syllabus for a one-semester four-credit course. The
accompanying table provides syllabi for each of these two
options.

MESSAGE TO THE STUDENT

The web-based interactive modules of this book were developed
with you, the student, in mind. Take the time to use them
in conjunction with the material in the textbook. Video
animations can show you how fields and waves propagate
in time and space, how the beam of an antenna array can
be made to scan electronically, and examples of how current
is induced in a circuit under the influence of a changing
magnetic field. The modules are a useful resource for self-
study. You can find them at the Student Website link on
http://www.pearsonhighered.com/ulaby. Use them!

ACKNOWLEDGMENTS

Special thanks are due to reviewers for their valuable comments
and suggestions. They include Constantine Balanis of Arizona
State University, Harold Mott of the University of Alabama,
David Pozar of the University of Massachusetts, S. N. Prasad
of Bradley University, Robert Bond of New Mexico Institute of
Technology, Mark Robinson of the University of Colorado at
Colorado Springs, and Raj Mittra of the University of Illinois. I
appreciate the dedicated efforts of the staff at Prentice Hall and
I am grateful for their help in shepherding this project through
the publication process in a very timely manner.

Fawwaz T. Ulaby
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Objectives

Upon learning the material presented in this chapter, you should
be able to:

1. Describe the basic properties of electric and magnetic
forces.

2. Ascribe mathematical formulations to sinusoidal waves
traveling in both lossless and lossy media.

3. Apply complex algebra in rectangular and polar forms.

4. Apply the phasor-domain technique to analyze circuits
driven by sinusoidal sources.
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Figure 1-1 2-D LCD array.

Overview

Liquid crystal displays have become integral parts of many
electronic consumer products, ranging from alarm clocks and
cell phones to laptop computers and television systems. LCD
technology relies on special electrical and optical properties of
a class of materials known as liquid crystals, which are neither
pure solids nor pure liquids but rather a hybrid of both. The
molecular structure of these materials is such that when light
travels through them, the polarization of the emerging light
depends on whether or not a voltage exists across the material.
Consequently, when no voltage is applied, the exit surface
appears bright, and conversely, when a voltage of a certain level
is applied across the LCD material, no light passes through it,
resulting in a dark pixel. In-between voltages translate into
a range of grey levels. By controlling the voltages across
individual pixels in a two-dimensional array, a complete image
can be displayed (Fig. 1-1). Color displays are composed of
three subpixels with red, green, and blue filters.

� The polarization behavior of light in an LCD is a
prime example of how electromagnetics is at the heart
of electrical and computer engineering. �

The subject of this book is applied electromagnetics (EM),
which encompasses the study of both static and dynamic electric
and magnetic phenomena and their engineering applications.
Primary emphasis is placed on the fundamental properties of
dynamic (time-varying) electromagnetic fields because of their
greater relevance to practical problems in many applications,
including wireless and optical communications, radar, bioelec-
tromagnetics, and high-speed microelectronics. We study wave
propagation in guided media, such as coaxial transmission lines,
optical fibers and waveguides; wave reflection and transmission
at interfaces between dissimilar media; radiation by antennas;
and several other related topics. The concluding chapter is
intended to illustrate a few aspects of applied EM through an ex-
amination of design considerations associated with the use and
operation of radar sensors and satellite communication systems.

We begin this chapter with a chronology of the history of
electricity and magnetism. Next, we introduce the fundamental
electric and magnetic field quantities of electromagnetics, as
well as their relationships to each other and to the electric
charges and currents that generate them. These relationships
constitute the underpinnings of the study of electromagnetic
phenomena. Then, in preparation for the material presented in
Chapter 2, we provide short reviews of three topics: traveling
waves, complex numbers, and phasors, all useful in solving
time-harmonic problems.
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1-1 Historical Timeline

The history of EM may be divided into two overlapping eras.
In the classical era, the fundamental laws of electricity and
magnetism were discovered and formulated. Building on these
formulations, the modern era of the past 100 years ushered in
the birth of the field of applied EM, the topic of this book.

1-1.1 EM in the Classical Era

Chronology 1-1 provides a timeline for the development of
electromagnetic theory in the classical era. It highlights those
discoveries and inventions that have impacted the historical
development of EM in a very significant way, even though the
selected discoveries represent only a small fraction of those
responsible for our current understanding of electromagnetics.
As we proceed through the book, some of the names highlighted
in Chronology 1-1, such as those of Coulomb and Faraday,
will appear again later as we discuss the laws and formulations
named after them.

The attractive force of magnetite was reported by the Greeks
some 2800 years ago. It was also a Greek, Thales of Miletus,
who first wrote about what we now call static electricity: he
described how rubbing amber caused it to develop a force that
could pick up light objects such as feathers. The term “electric”
first appeared in print around 1600 in a treatise on the (electric)
force generated by friction, authored by the physician to Queen
Elizabeth I, William Gilbert.

About a century later, in 1733, Charles-François du Fay
introduced the notion that electricity involves two types of “flu-
ids,” one “positive” and the other “negative,” and that like-fluids
repel and opposite-fluids attract. His notion of a fluid is what
we today call electric charge. The invention of the capacitor
in 1745, originally called the Leyden jar, made it possible to
store significant amounts of electric charge in a single device.
A few years later, in 1752, Benjamin Franklin demonstrated
that lightning is a form of electricity. He transferred electric
charge from a cloud to a Leyden jar via a silk kite flown in
a thunderstorm. The collective eighteenth-century knowledge
about electricity was integrated in 1785 by Charles-Augustin
de Coulomb, in the form of a mathematical formulation
characterizing the electrical force between two charges in terms
of their strengths and polarities and the distance between them.

The year 1800 is noted for the development of the first electric
battery by Alessandro Volta, and 1820 was a banner year for
discoveries about how electric currents induce magnetism. This
knowledge was put to good use by Joseph Henry, who devel-
oped one of the earliest electromagnets and dc (direct current)

electric motors. Shortly thereafter, Michael Faraday built the
first electric generator (the converse of the electric motor). Fara-
day, in essence, demonstrated that a changing magnetic field
induces an electric field (and hence a voltage). The converse re-
lation, namely that a changing electric field induces a magnetic
field, was first proposed by James Clerk Maxwell in 1864 and
then incorporated into his four (now) famous equations in 1873.

� Maxwell’s equations represent the foundation of
classical electromagnetic theory. �

Maxwell’s theory, which predicted the existence of
electromagnetic waves, was not fully accepted by the scientific
community at that time, not until verified experimentally by
means of radio waves by Heinrich Hertz in the 1880s. X-rays,
another member of the EM family, were discovered in 1895 by
Wilhelm Röntgen. In the same decade, Nikola Tesla was the
first to develop the ac (alternating current) motor, considered a
major advance over its predecessor, the dc motor.

Despite the advances made in the 19th century in our
understanding of electricity and magnetism and how to put
them to practical use, it was not until 1897 that the fundamental
carrier of electric charge, the electron, was identified and its
properties quantified by Joseph Thomson. The ability to eject
electrons from a material by shining electromagnetic energy,
such as light, on it is known as the photoelectric effect.

� To explain the photoelectric effect, Albert Einstein
adopted the quantum concept of energy that had been
advanced a few years earlier (1900) by Max Planck.
Symbolically, this step represents the bridge between the
classical and modern eras of electromagnetics. �

1-1.2 EM in the Modern Era

Electromagnetics plays a role in the design and operation
of every conceivable electronic device, including the diode,
transistor, integrated circuit, laser, display screen, bar-code
reader, cell phone, and microwave oven, to name but a few.
Given the breadth and diversity of these applications (Fig. 1-2),
it is far more difficult to construct a meaningful timeline for the
modern era than for the classical era. That said, one can develop
timelines for specific technologies and link their milestone
innovations to EM. Chronologies 1-2 and 1-3 present timelines
for the development of telecommunications and computers,
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ca. 900 Legend has it that while walking across a field in northern
Greece, a shepherd named Magnus experiences a pull
on the iron nails in his sandals by the black rock he is
standing on.  The region was later named Magnesia and
the rock became known as magnetite [a form of iron with
permanent magnetism].

ca. 600 Greek philosopher Thales
describes how amber, after being
rubbed with cat fur, can pick up
feathers [static electricity].

ca. 1000 Magnetic compass used as a
navigational device. 

1600 William Gilbert (English) coins the term electric after the
Greek word for amber (elektron), and observes that a
compass needle points north-south because the Earth
acts as a bar magnet.

1671 Isaac Newton (English) demonstrates that white light is a
mixture of all the colors.

1733 Charles-François du Fay (French) discovers that
electric charges are of two forms, and that like charges
repel and unlike charges attract.

1745 Pieter van Musschenbroek (Dutch) invents the Leyden
jar, the first electrical capacitor.

1752 Benjamin Franklin
(American) invents
the lightning rod and
demonstrates that 
lightning is electricity.

1785
 

Charles-Augustin 
de Coulomb (French)
demonstrates that the 
electrical force between
charges is proportional to
the inverse of the square
of the distance between 
them.

1800

 

Alessandro Volta (Italian)
develops the first electric 
battery.

1820

 

Hans Christian Oersted
(Danish) demonstrates the
interconnection between
electricity and magnetism 
through his discovery that
an electric current in a 
wire causes a compass 
needle to orient itself 
perpendicular to 
the wire.

1820 Andre-Marie Ampère (French)
notes that parallel currents in
wires attract each other and 
opposite currents repel.

1820
 

Jean-Baptiste Biot (French)
and Félix Savart (French) 
develop the Biot-Savart law 
relating the magnetic field 
induced by a wire segment 
to the current flowing through it.

Chronology 1-1:  TIMELINE FOR ELECTROMAGNETICS IN THE CLASSICAL ERA

Electromagnetics in the Classical Era

BC

BC
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1888 Nikola Tesla
(Croatian-American)
invents the ac
(alternating 
current) electric 
motor.

1895 Wilhelm Röntgen (German)
discovers X-rays.  One of
his first X-ray images was
of the bones in his wife's
hands. [1901 Nobel prize
 in physics.]

1897 Joseph John Thomson (English) discovers the electron
and measures its charge-to-mass ratio.  [1906 Nobel prize
in physics.]

1905 Albert Einstein (German-American) explains the
photoelectric effect discovered earlier by Hertz in 1887.
[1921 Nobel prize in physics.]

1827 Georg Simon Ohm (German) formulates Ohm's law
relating electric potential to current and resistance.

1827 Joseph Henry (American) introduces the concept of 
inductance, and builds one of the earliest electric motors.  
He also assisted Samual Morse in the development 
of the telegraph.

1831 Michael Faraday (English) 
discovers that a changing 
magnetic flux can induce
an electromotive force.

1873 James Clerk Maxwell 
(Scottish) publishes his 
Treatise on Electricity and 
Magnetism in which he unites 
the discoveries of Coulomb, 
Oersted, Ampère, Faraday, 
and others into four elegantly 
constructed mathematical
equations, now known as 
Maxwell’s Equations.

1887

Chronology 1-1:  TIMELINE FOR ELECTROMAGNETICS IN THE CLASSICAL ERA (continued)
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Heinrich Hertz 
(German) builds 
a system that 
can generate 
electromagnetic 
waves (at radio 
frequencies) and 
detect them.

1835 Carl Friedrich Gauss (German) formulates Gauss's law
relating the electric flux flowing through an enclosed 
surface to the enclosed electric charge.




